Parametric Study of an Electroosmotic Micromixer with Heterogeneous Charged Surface Patches
نویسندگان
چکیده
A T-shaped micromixer featuring electroosmotic flow with heterogeneous charged surface patches on the channel walls was analyzed, and an improved design was proposed to enhance mixing performance. Numerical analysis was performed using steady Navier-Stokes equations with an additional electrokinetic body force. The numerical results for species concentration were validated with available experimental data. A parametric analysis of the micromixer was performed by varying channel height, channel width, patch width, and externally applied voltage. The effects of these parameters on the flow structure and mixing performance were analyzed in detail. A quantitative measurement based upon the mass variance was employed to quantify the mixing performance. Numerical results of the parametric study were used to propose an improved micromixer design with spacing between adjacent charged patches. The proposed design provided a more favorable flow structure to allow for enhanced mixing performance.
منابع مشابه
Heterogeneous surface charge enhanced micromixing for electrokinetic flows.
Enhancing the species mixing in microfluidic applications is key to reducing analysis time and increasing device portability. The mixing in electroosmotic flow is usually diffusion-dominated. Recent numerical studies have indicated that the introduction of electrically charged surface heterogeneities may augment mixing efficiencies by creating localized regions of flow circulation. In this stud...
متن کاملAc Electro-osmotic Micromixer Using a Face-to-face, Asymmetric Pair of Planar Electrodes
T This paper reports the mixing performance of an AC electroosmotic micromixer based on the three-dimensional extensional flow generated by a face-to-face, asymmetric pair of planar electrodes. This work represents the first successful use of such an asymmetric electrode pair in an AC electroosmotic micromixer. Due to the highly 3dimentional flow pattern generated by the face-to-face electrode ...
متن کاملAn Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure
Homogeneous and rapid mixing in microfluidic devices is difficult to accomplish, owing to the low Reynolds number associated with most flows in microfluidic channels. Here, an efficient electroosmotic micromixer based on a carefully designed lateral structure is demonstrated. The electroosmotic flow in this mixer with an asymmetrical structure induces enhanced disturbance in the micro channel, ...
متن کاملDesign and fabrication of an effective micromixer through passive method
Micromixer is a significant component of microfluidics particularly in lab-on-chip applications so that there has been a growing need for design and fabrication of micromixers with a shorter length and higher efficiency. Despite most of the passive micromixers that suffer from long mixing path and complicated geometry to increase the efficiency, our novel design suggests a highly efficient micr...
متن کاملE lectroosmosis a Mechanism of Micromixer and Micropump
Electroosmotic flow in microchannels is restricted to low Reynolds number regimes characterized by extremely weak inertia forces and laminar flow. Consequently, the mixing of different species occurs primarily through diffusion, and hence cannot readily be achieved within a short mixing channel. The current study presents a numerical investigation of electrokinetically driven flow mixing in mic...
متن کامل